Random crossings of cumulative distribution functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Crossings of Empirical Distribution Functions

Let F and G be two continuous distribution functions that cross at a finite number of points − ∞ ≤ t1 < ⋯ < tk ≤ ∞. We study the limiting behavior of the number of times the empirical distribution function Gn crosses F and the number of times Gn crosses Fn. It is shown that these variables can be represented, as n → ∞, as the sum of k independent geometric random variables whose distributions d...

متن کامل

Cumulative distribution networks: Inference, estimation and applications of graphical models for cumulative distribution functions

Cumulative distribution networks: Inference, estimation and applications of graphical models for cumulative distribution functions Jim C. Huang Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto 2009 This thesis presents a class of graphical models for directly representing the joint cumulative distribution function (CDF) of many random variabl...

متن کامل

Random walks on networks: cumulative distribution of cover time.

We derive an exact closed-form analytical expression for the distribution of the cover time for a random walk over an arbitrary graph. In special case, we derive simplified exact expressions for the distributions of cover time for a complete graph, a cycle graph, and a path graph. An accurate approximation for the cover time distribution, with computational complexity of O(2n) , is also present...

متن کامل

Maximum-likelihood learning of cumulative distribution functions on graphs

For many applications, a probability model can be more easily expressed as a cumulative distribution functions (CDF) as compared to the use of probability density or mass functions (PDF/PMFs). One advantage of CDF models is the simplicity of representing multivariate heavy-tailed distributions. Examples of fields that can benefit from the use of graphical models for CDFs include climatology and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1961

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1961.11.127